sklearn decision tree
split을 2, 50로 설정하고 accuracy를 비교한다.
split을 2, 50로 설정하고 accuracy를 비교한다.
| 
import sys 
from class_vis import prettyPicture 
from prep_terrain_data import makeTerrainData 
import matplotlib.pyplot as plt 
import numpy as np 
import pylab as pl 
features_train, labels_train, features_test, labels_test = makeTerrainData() 
########################## DECISION TREE ################################# 
### your code goes here--now create 2 decision tree classifiers, 
### one with min_samples_split=2 and one with min_samples_split=50 
### compute the accuracies on the testing data and store 
### the accuracy numbers to acc_min_samples_split_2 and 
### acc_min_samples_split_50, respectively 
from sklearn import tree 
clf_2 = tree.DecisionTreeClassifier(min_samples_split=2) 
clf_2.fit(features_train,labels_train) 
acc_min_samples_split_2 = clf_2.score(features_test,labels_test) 
clf_50 = tree.DecisionTreeClassifier(min_samples_split=50) 
clf_50.fit(features_train,labels_train) 
acc_min_samples_split_50 = clf_50.score(features_test,labels_test) 
def submitAccuracies(): 
  return {"acc_min_samples_split_2":round(acc_min_samples_split_2,3), 
          "acc_min_samples_split_50":round(acc_min_samples_split_50,3)} 
print submitAccuracies() | cs | 
댓글
댓글 쓰기